View Single Post
 
Question about work (physics)
Reply
Posted 2007-11-30, 09:46 AM
Probably best for those currently in, or have taken calculus:

From a mathematical standpoint I have no trouble understanding the difference between a conservative vector field and a non-conservative vector field. It's rather simple. The conservative field can be reduced to some functions gradient vector, doesn't care what path you decide to take, and always returns 0 on a closed loop. However, on my calculus test today on a problem about work I got an unexpected answer. A particle started at the origin, went around the plane z=y/2 ranging from {(x, y), -1<=x<=1, -2<=y<=2} and returned to the origin. The fact that it traversed a closed loop made bells go off in my head. I though, "what a stupid question. No-brainer." But for some reason I didn't put down 0 and worked out the line integral. I got 3, no matter how many times I checked myself. I'm absolutely convinced I did the math correctly on that problem. Our physics professor had always told us that if the displacement vector is 0 then no work was done. At the time of my test I was so convinced to what my physics professors had told me, I convinced myself I was wrong and put down 0 anyway. I was baffled by that problem, so I thought about it on my way to the computer lab once I got out of my test. And it hit me. What if the force field wasn't conservative? It would make perfect sense. That's why the answer, was in fact, 3. However I don't quite understand. What would be a real life example of a non-conservative force-field? Or any real non-conservative vector field for that matter. What are the physical differences between them? Or are non-conservative fields purely a mathematical construct? I'm still grappling with this. I can't get my head quite around it, though I'm glad I figured out why my answer was always 3.
Old
Profile PM WWW Search
Demosthenes seldom sees opportunities until they cease to beDemosthenes seldom sees opportunities until they cease to beDemosthenes seldom sees opportunities until they cease to beDemosthenes seldom sees opportunities until they cease to be
 
Demosthenes